

Choosing a Container-Based Platform as a Service 1

Choosing a Container-Based Platform as a Service
With Special Considerations for DoD Implementations

15 August 2019

Introduction
Kubernetes [3] has become a de facto industry standard framework for large-scale orchestration of
containers. Several commercial companies and open source communities have leveraged Kubernetes to
build container-based platform as a service (PaaS) products. While there are certainly non-Kubernetes-
based approaches, a large number of DoD programs are choosing Kubernetes-based products for their
container infrastructure. There are also several hosted / managed options for Kubernetes (Amazon EKS,
Google GKE, etc.) as well. While these options can greatly simplify infrastructure deployment, many DoD
programs handle classified data and/or must deploy to standalone (or tactical) networks that prohibit the
use of a hosted, cloud-based PaaS. Thus, the focus herein is on locally deployed implementations.

This article aims to describe a few of the differences (at the time of writing) between implementing a
stock Kubernetes system or leveraging a full-blown PaaS based on Kubernetes, as well as some of the
critical considerations when deciding which option might be best for a given project.

Kubernetes
Kubernetes is the open source engine that powers many container-based PaaS systems. It is a distributed
system focused on scheduling containers across a cluster of nodes. It will allocate the requisite compute,
storage, and networking resources required to run containerized workloads defined by declarative
deployment descriptors. Kubernetes also provides the necessary APIs to manage the cluster along with
command line utilities that can be used by administrators or other processes. Figure 1 illustrates the high-
level architecture of Kubernetes.

Figure 1. Kubernetes Architecture

Kubernetes MasterKubernetes MasterKubernetes Master

Scheduler Controllers etcd

API Server

K8S Node

Kubelet

Kube Proxy

Pods

K8S Node

Kubelet

Kube Proxy

Pods

K8S Node

Kubelet

Kube Proxy

Pods

Admin
www

K8S Node

Kubelet

Kube Proxy

Pods

Choosing a Container-Based Platform as a Service 2

Kubernetes itself is essentially a container orchestration framework, with a highly extensible architecture
and a large ecosystem of extensions and plugins. It focuses mainly on container orchestration (e.g.
scheduling, resource limitations, etc.) and cluster management (managing many nodes). Kubernetes itself
does not provide a web-based administration console, an installer, software defined networking, nor a
host of other features. However, there are a large number of related projects built to work with
Kubernetes that add these functions.

Kubernetes was originally tied very closely to the Docker [2] implementation of containers. In recent
months the Open Container Initiative [5] and the Cloud Native Foundation have created open
specifications and a new generation of tools that have freed Kubernetes from tight coupling to Docker.
Projects like CRI-O, runC, and containerD have decoupled Kubernetes from Docker and allow it to interact
with any number of container runtimes that support the Open Container Initiative specifications.

Kubernetes-Based Platform as a Service (PaaS)
In Figure 2 below, the Kubernetes project itself focuses mainly on only the Container Orchestration and
Cluster Management components of a PaaS. A full-blown PaaS project / product brings together a broader
set of functionalities typically needed to run containerized workloads in a production setting. Software
Defined Networking (SDN), virtualized storage, logging and monitoring, a container registry, security and
access controls are some of the common features added to Kubernetes by PaaS providers. In addition, it
is common for a PaaS to include automated or semi-automated installers as well as provide an
aesthetically-pleasing web-based management console. Together, the installers and management
consoles greatly reduce the effort required to deploy and manage a Kubernetes based cluster.

A commercial PaaS based on Kubernetes will usually integrate the base Kubernetes project with several
other commercial products or open source project to provide a turn-key solution. Many of these
additional components are sourced from the open source community around Kubernetes. For example,
there are more than half a dozen open-source software defined networking (SDN) systems available for
Kubernetes. PaaS vendors will often select and integrate one of these projects into the PaaS, thoroughly
test it, and integrate the SDN capability with other functions within the PaaS, such as security and access
control, load balancing, auto-scaling, etc.

Figure 2. Container-Based PaaS Architecture

Base OS (Linux)

Software Defined
Networking

Virtualized
Storage

Logging &
Monitoring

Container
Registry

Security
Controls

Cluster Management

Container Orchestration

Container Container Container Container Container

Compute StorageNetworking

Physical Virtual Public Private

In
st

al
la

tio
n

an
d

U
pg

ra
de

M
an

ag
em

en
t C

on
so

le

Choosing a Container-Based Platform as a Service 3

Conceptual Model of the Kubernetes Ecosystem
While it is a somewhat loose analogy, a container-based PaaS is often referred to as a “cloud operating
system”. A normal operating system (OS) is responsible for securely managing the resources of and
scheduling processes on a single server. Similarly, a PaaS is responsible for securely managing the
resources of and scheduling processes (containers) across a large cluster of servers. This analogy can be
further extended by comparing the relationship of the Linux Kernel to Operating Systems, Package
Managers, and Application Lifecycle Managers. The resulting conceptual model can help developers and
system administrators evaluate the Kubernetes ecosystem by relating it to Linux, another well-known
ecosystem that has been around for decades [6].

Table 1 below draws a parallel between the Linux Ecosystem and the Kubernetes Ecosystem using Red
Hat products. Red Hat was used as an example simply because they have prominent products in both
ecosystems. The same logical comparison could be done with other vendor products as well.

Table 1. Kubernetes vs. Linux Ecosystems

Kernel Upstream OS
(Community)

Enterprise OS
(Commercial)

Package
Management

Lifecycle
Manager

Linux Kernel Fedora Linux Red Hat
Enterprise Linux RPMs Red Hat Satellite

Kubernetes OKD
OpenShift
Container
Platform

Helm Charts
Operator
Lifecycle
Manager

Kubernetes can be thought of as the “Kernel” of a container-based PaaS. It provides container scheduling
and resource management across a cluster of servers. By itself, the Linux Kernel does not have the usual
commands and services that users have come to expect from a full-fledged Linux OS. While extremely
powerful, without things like bash, cron, vim, network / filesystem drivers, installers etc. the Linux Kernel,
on its own, is of limited utility for most use cases. Kubernetes is similarly powerful and similarly lacks many
of the capabilities of a full-fledge PaaS, including several key features generally required to deploy and
manage a robust containerized application infrastructure.

Open source projects like Fedora transform the Linux Kernel into a full-fledged Linux Operating System
Distribution by integrating additional functionality, such as the aforementioned tools and services. Part of
the Fedora project’s role is to find a set of drivers, utilities, services, etc. that are all compatible with each
other and with a particular version of the Linux Kernel. Fedora also provides a convenient installer that

 Flexibility Simplicity Flexibility Simplicity

Choosing a Container-Based Platform as a Service 4

installs the Linux Kernel along with these other components, so that an end user does not have to do this
themselves. Similarly, the OKD project takes the base Kubernetes distribution and integrates SDN, storage,
security components, a web-based management console, an installer, and other capabilities to deliver an
open source PaaS Distribution.

Fedora serves as the upstream project for Red Hat Enterprise Linux (RHEL). RHEL is a heavily tested and
commercially supported Linux Distribution. Red Hat takes Fedora and hardens it for use in production and
enterprise scenarios. Red Hat publishes a lifecycle schedule for RHEL which includes a long-term support
strategy. RHEL customers get priority support, bug fixes, and cyber security patches on a longer-term and
quicker schedule than Fedora. Similarly, Red Hat takes OKD and produces the Open Shift Container
Platform (OCP), which is a hardened and commercially supported PaaS Distribution. Much like RHEL, users
of OCP will get long-term support and priority bug fixes.

Moving up the stack, the Red Hat Package Manager (RPM) format is an open standard way to package
applications for installation in Red Hat flavor Linux distributions. The RPM format defines how packages
are installed / removed from a single server. Likewise, Helm is an open source package manager and
packaging format which describes how containerized workflows can be installed / uninstalled to a
Kubernetes based PaaS. Finally, Red Hat Satellite provides application lifecycle management (upgrades,
compliance, etc.). The Operator Lifecycle Manager (OLM) framework for Kubernetes provides lifecycle
management for containerized workloads in a PaaS.

A Key Trade-Off
In either ecosystem, the amount of work to deploy and maintain a production-ready system increases the
further “left” you go, but the flexibility also increases. If building a Linux-based application, starting with
the raw Linux Kernel would require a lot of work to first build enough of an OS to host your application.
Similarly, if starting with Kubernetes, there is a lot of work to do to build a production-ready PaaS to host
your containerized workloads. That said, with the increased work comes a greater amount of flexibility
and control of exactly how the system is built. This will be a key theme for many of the tradeoffs between
Kubernetes and a full PaaS.

Kubernetes vs. PaaS Considerations
There are several considerations to evaluate when choosing between leveraging Kubernetes or a
commercial or Open Source PaaS solution. Several of them are discussed below:

Supported Infrastructures
It is possible, although complicated, to get Kubernetes running on almost any Linux-based operating
system. This is largely because the installation process is manual. There are a few projects (kubeadm,
kops, etc.) that aim to streamline installation of Kubernetes on several cloud providers. PaaS vendors
typically build installers for their offering. These installers greatly simplify the installation and updating of
the cluster. However, the set of infrastructures they support is sometimes limited.

Hardening and Stability
PaaS projects generally lag behind Kubernetes versions. This is because they are taking care to check
compatibility between components, develop security policy, create installation and upgrade procedures,
generate documentation, and generally test the platform. This results in a greater degree of stability in
the platform. The increased stability does come at the cost of slower adoption of new features and
functionality. Early adopters often prefer Kubernetes or Open Source PaaS over commercial PaaS
solutions. Some PaaS vendors attempt a more rapid integration of upstream features than others.

Choosing a Container-Based Platform as a Service 5

API Stability
A non-trivial portion of the Kubernetes API is in an alpha or beta state. There are often breaking API
changes between releases, and occasionally experimental APIs are removed altogether if the community
decides to go in another direction. While the community does their best, and generally follows semantic
versioning principles, there is no guarantee that the API that exists today will be there in a subsequent
version. That said, generally once part of the API is marked stable and has been in place for a long time, it
can be considered safe.

Do-It-Yourself Functionality
Generally, when implementing raw Kubernetes, the project must select and integrate several other
components that are not available by default. This includes:

• Identity Management: Kubernetes does not come with user and identity management built in.
Recently the role-base-access-control features have greatly improved. However, if the project
requires integration to LDAP or Active Directory for user authorization, this will need to be
implemented by the project.

• DNS Integration: Kubernetes requires a functioning DNS infrastructure to route traffic to the
appropriate containers. Projects will need to configure and integrate DNS.

• Software Defined Networking: Kubernetes has over half a dozen options for networking. Projects
will need to integrate one to allow containers to communicate with each other.

• Storage Infrastructure: Projects will need to integrate a method for provisioning storage in the
cluster.

• Ingress and Load Balancing: Projects will need to implement and integrate an ingress controller
into Kubernetes to allow external consumers to leverage services in the cluster.

• Service Mesh Implementation: If a service mesh is required (e.g. Istio), projects will need to
integrate it themselves.

• Log Aggregation: Kubernetes does not provide a log aggregation capability out of the box. Projects
typically integrate FluentD, Elasticserach, and Kibana. These must then be secured, as they are
not out of the box.

• Metrics and Monitoring: Kubernetes does not provide a metrics and monitoring capability out of
the box. Projects typically integrate Prometheus and Grafana. These must then be secured, as
they are not out of the box.

• Management Console: Kubernetes does not have a robust web-based management console by
default. There is an open source Kubernetes Dashboard project that can be integrated, though it
is not as robust as a PaaS.

It should be noted, that while each of these is not terribly complex, the project is now responsible for:

1. Researching the plethora of options out there, and selecting the best tools based on project
requirements.

2. Choosing between open source and supported versions of all of these projects.
3. Ensuring that all of these integrated projects are compatible with the specific version of

Kubernetes they have.
4. Tracking all cyber vulnerabilities across all these projects and upgrading / patching them as

necessary.

The potential trap is that the full magnitude of work required to deploy and maintain Kubernetes in
production if often not discovered until a project is twelve months down the road. At this point, the
project may be past the point of no return and stuck with an implementation that is very hard to manage.

Choosing a Container-Based Platform as a Service 6

Installation and Upgrades
Most PaaS products supply installers and provide “managed upgrades”. These installers install and
upgrade all of the constituent components (as mentioned previously) in one fell swoop and are heavily
tested by the vendor. Conversely, the project is often on their own when attempting to install and upgrade
the cluster. Furthermore, the cluster cannot be upgraded as a whole. The project must usually upgrade
each individual component. Care must be taken to ensure that when upgrading one component,
compatibility with Kubernetes and each of the interdependent services is considered.

Patching
The Kubernetes community does not provide long-term support. The community is fairly responsive to
mission critical bugs and severe cyber vulnerabilities. However, the community does not “backport” fixes
very far. Kubernetes will generally fix bugs in the latest release, and perhaps a point release one or two
minor versions back. If your project is on a version that is more that 6 months old, it is likely that you will
not receive a patch. Most commercial PaaS products provide long-term support and will patch much older
versions of their products, in essence doing the “backport” for you.

Cyber Security Accreditation
When building systems in the DoD, Cyber Security Accreditation is often a bottleneck. Many commercial
vendors see the DoD as a viable market for their software and take steps to address cyber security
accreditation. Most open source projects do not do this. When building from Kubernetes it is likely that a
team will develop a highly custom collection of tools and services. Even if the common tools and services
are integrated into Kubernetes, the project will likely have integrated them in a custom way. Cyber
Security Accreditors will be looking at something they have not seen before. This can be problematic.

For Linux based systems, the base OS (RHEL, Ubuntu, etc.) has historically been a key focus of Cyber
Security Accreditation. Standard Technical Implementation Guides (STIGs) are developed to secure the OS
and automated vulnerability scanners have been developed to validate the security posture of the OS.
The reason being that if the base OS is not secure, then the security mechanisms in the individual
applications deployed in the OS are of little use. The PaaS is now viewed as the OS of the distributed
cluster. Hardening of container infrastructure is as equally important to the security of the distributed
system as the hardening Linux OS was to the individual server.

DoD guidance generally requires major open source infrastructure components be supported by a
commercial company that can provide both long-term support and cyber vulnerability remediation. While
the security community is just now contemplating the impacts of PaaS, it is likely that the same type of
policy for the base OS, will be coming for the container infrastructure. Even prior to formal policy,
accreditation organizations are already starting to require commercial support of the PaaS layer. If
commercial support is not
provided, the program will
have to demonstrate they
have a sufficient ability to
self-support the various
technologies involved.

Leveraging popular open
source or commercial PaaS
products may result in
easier accreditation since
accreditors will have seen “prior art” and because vendors will work with the DoD in providing the
requisite artifacts such as STIGs, OpenSCAP profiles, automation Scripts, etc.

Risk Management Framework (RMF)

Feedback

Implement
Security Controls

Select
Security Controls

Categorize
Information System

Assess
Security Controls

Authorize
Information System

Monitor
Security Controls

Choosing a Container-Based Platform as a Service 7

When to Choose a Commercial PaaS?
Leveraging commercial PaaS will be the least amount of work but will provide the least flexibility. If the
product fits your use case, then the flexibility consideration is generally not an issue. It will take some time
(several months) for new features and functionality in the open source community to become available.
Projects should consider using a commercial PaaS if:

• The project has “production-like” reliability requirements.
• Long-term support is required.
• License fees are not prohibitive.
• License fees are offset by the large reduction in labor required to manage the PaaS.
• The project desires commercial support and priority bug fixing.
• The project team does not have the ability to patch or backport bug fixes themselves.
• The project values stability and security over being on the bleeding edge.

When to Choose an Open Source PaaS?
Leveraging an open source PaaS is somewhat of a middle ground. This option will be less work and does
not impose license costs. New features and functionality will arrive slower than using Kubernetes, but
generally faster than using a commercial PaaS. Projects should consider using an Open Source PaaS if:

• Long-term support it not required.
• The project team has the ability to patch and backport bug fixes themselves.
• There is not a need to be on the bleeding edge, but the project values quicker access to new

features and functionality than will typically be available in a Commercial PaaS.
• The project is comfortable with some level of self-support.
• License fees of a commercial PaaS are prohibitive*.

When to Choose Kubernetes?
Leveraging Kubernetes directly will require the most work but will also be the most flexible. Projects will
have the quickest access to new features and functionality coming out of the Kubernetes ecosystem.
Projects should consider using Kubernetes if:

• Long-term support is not required.
• The project team has the ability to patch an backport bug fixes themselves.
• There is no commercial or open source PaaS distribution that is installable in the target

environment (e.g. exotic hardware).
• The project requires heavy customization of Kubernetes.
• The project requires tight control of the exact modules installed.
• The team has deep expertise in Kubernetes and the ability to troubleshoot and remediate issues.
• The primary goal is to deeply learn and understand the internals of Kubernetes.
• The project does not have “production-like” reliability requirements.
• There is a desire to be on the bleeding edge, potentially due to a newly developed, but required,

feature that has not made its way into commercial or open source PaaS distributions.
• License fees of a commercial PaaS are prohibitive*.

* Teams often underestimate the cost of the labor required to build and support a production-grade PaaS.
System testing, backporting patches, version compatibility, integrating other tools, development of training and
documentation, etc. can all be very expensive. A detailed cost analysis should be performed.

Choosing a Container-Based Platform as a Service 8

Kubernetes Based PaaS Examples
Below are several examples of commercial and open source PaaS products. This is not an exhaustive list
nor an endorsement of any product. The list simply illustrates that there are many viable options.

• Commercial PaaS
o Red Hat OpenShift
o Docker Enterprise
o Pivotal Container Services (PKS)
o Kontena Pharos
o VMWare PKS
o Gravitational Gravity

• Open Source PaaS
o OKD
o Rancher (Support Options Available)
o Apache Mesosphere Kubernetes Engine
o Canonical Charmed Kubernetes (Support Options Available)
o Zenko

Product Lock-In
Most PaaS products provide additional, product specific functionality on top of the Kubernetes API. These
features often greatly simplify application deployment and management. However, if a project leverages
these features, porting to another PaaS may require rework. In many cases, it is fine to select a product
and deal with the rework IF it is ever required. Proper design (encapsulation, abstraction, etc.) can also
limit effort of moving to another PaaS. If a project desires to remaining agnostic, most PaaS products
directly expose the raw Kubernetes API. A valid risk mitigation strategy is to limit interaction with the PaaS
to the standard Kubernetes API. This will make the project maximally portable between PaaS products.

Conclusion
Kubernetes is an immensely valuable open source project and is powering a large number of next
generation systems in both the commercial world and the DoD. There exists a spectrum of options to
deploy a Kubernetes-based infrastructure ranging from a raw Kubernetes implementation to a
productized, commercially supported PaaS. Choosing the right option can have a large and profound
impact on the long-term viability of a project. Hopefully this article helps projects properly frame the
decision, allowing them to make the best possible choice and pave the way to successful deployment and
sustainment of containerized workloads.

About SOLUTE, Inc.
SOLUTE is a premier DoD engineering firm specializing in system modernization using the latest advances
in Software Engineering, Cyber Security, Cloud Architectures, and DevSecOps. SOLUTE has a talented
workforce with tremendous expertise in building, deploying, and managing containerized applications
deployed to public / private cloud infrastructures. SOLUTE is leading the charge across multiple large and
complex Navy, Army, and Air Force systems and is actively collaborating with DoD leadership on
engineering best practices for mission critical PaaS deployments and DevSecOps best practices.

SOLUTE, Inc. is a Service-Disabled Veteran Owned Small Business, founded in 2002, headquartered in San
Diego, CA and with offices in Denver, CO; Washington, DC; and Lexington Park, MD. SOLUTE has over 150
cleared engineers ready to bring innovation the DoD’s most complex, mission critical systems.

Choosing a Container-Based Platform as a Service 9

References
1. Cholewa, Tomasz. 10 most important differences between OpenShift and Kubernetes. 10 June 2019.

https://cloudowski.com/articles/10-differences-between-openshift-and-kubernetes/. Accessed 11
August 2019.

2. “Docker (software).” Wikipedia. Wikipedia.Org, 2 August 2019,
https://en.wikipedia.org/w/index.php?title=Docker_(software). Accessed 11 August 2019.

3. Kubernetes. https://kubernetes.io/. Accessed 11 Aug 2019
4. Maayan, Gilad D. Kubernetes vs OpenShift: What Is the Difference? 11 July 2019.

https://dzone.com/articles/kubernetes-vs-openshift-what-is-the-difference. Accessed 11 August
2019.

5. Open Container Initiative. http://www.opencontainers.org. Accessed 11 August 2019.
6. Swift, Greg. K8S is the Kernel. 12 March 2019. https://logdna.com/blog/k8s-is-the-kernel/. Accessed

11 Aug 2019.
7. Yegulalp, Serdar. 10 Kubernetes distributions leading the container revolution. 15 May 2019.

https://www.infoworld.com/article/3265059/10-kubernetes-distributions-leading-the-container-
revolution.html. Accessed 11 August 2019.

https://dzone.com/articles/kubernetes-vs-openshift-what-is-the-difference
https://www.infoworld.com/article/3265059/10-kubernetes-distributions-leading-the-container-revolution.html
https://www.infoworld.com/article/3265059/10-kubernetes-distributions-leading-the-container-revolution.html

